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Abstract

A correlation for the prediction of the third virial coefficient of non-polar and polar
compounds has been developed by using a cubic equation of state. It requires a knowledge
of the critical pressure, the critical temperature and the Pitzer acentric factor o, and, in
addition for polar compounds, a knowledge of the dipole moment and of an empirical
substance-dependent factor x. Predictions agree very well with the experimental data for all
the compounds considered. The results also compare well with the values obtained by
means of the De Santis and Grandes, and the Orbey and Vera correlations, which were
established to predict the third virial coefficient of non-polar gases.
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a(T) function defined by eqn. (4a)
b defined by eqn. (4b)

B, C, D second, third and fourth virial coefficients respectively
power series coefficient defined by eqns. (13a)-(13c)
function defined by eqns. (7), (8) and (12)

number of data points
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constant, eqn. (2)
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Greek letters

a function defined by eqns. (4a) and (12)
N dipole moment

@ Pitzer acentric factor

Q,, Q, dimensionless entities

Subscripts
c critical state
r reduced state

INTRODUCTION AND THEORETICAL DEVELOPMENT

In the analysis of vapour-liquid equilibrium behaviour, the non-ideality
of the vapour phase should be taken into account. For calculations to
moderate pressures, the density is often less than two-thirds the critical
density, and the virial equation of state expanded to include the third term
may supply a good estimate of the vapour-phase fugacity coefficient.

This work provides a correlation for non-polar and polar fluids, based on
the available critically selected experimental values of the third virial
coefficient. '

The expanded form of the pressure-explicit virial equation of state may
be written

RT B C D
P % 1+ V+V2+V3+ (1)
where B is the second, C the third, D the fourth, etc. virial coefficient.

There are several correlations for estimating the third virial coefficient
of non-polar compounds: those of Chueh and Prausnitz [1], Pope et al. [2],
De Santis and Grande [3] and Orbey and Vera [4]. This work, using the
recently proposed F function of Shaw and Lielmezs [5] and Mak and
Lielmezs [6] via the Peng—Robinson equation [7], presents a correlation for
estimating the third virial coefficient for both non-polar and polar fluids.

We write the generalized form of the cubic equation of state of Schmidt
and Wenzel [8] as

RT a(T) )
V—-b V?+ubV+b? @)

If eqn. (2) is expanded in inverse molar volume, similarly to eqn. (1), the
second and third virial coefficients are given as

a(T)
B=b- RT (3a)

P=
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C=b(b+ua(T)/RT) (3b)
where a(T') and b are defined as

2T2
a(T) =a(T.)a(T) = ‘Qa( a(T) (4a)

RT,
b=b(T,)=Q,

” (4b)

The proposed correlation for the third virial coefficient has been devel-
oped from eqn. (3b) by using the Peng—Robinson equation of state repro-
duced from eqn. (2) by setting « =2 and w = —1, i.e.

RT a(T)
P= 12 2 (5)
V—-b V*+2bV-b

The third virial coefficient (eqn. (3b)) in terms of the Peng—Robinson

equation (eqn. (5)) can be now written as

C =b*+2ba(T)/RT (6)
If we put eqns. (4a) and (4b) into eqn. (6), and then multiply throughout

by (P./RT,)?, we obtain in terms of the Peng—Robinson equation of state
an expression for the third virial coefficient given as

RT,

where F =a(T,)/T. is the F function, and Q, and Q, assume the values
for the Peng—Robinson equatlon of state, i.e. ), = 0457 24 and Q,=0.
07780. To account empirically for the non- add1t1v1ty contributions to the
third virial coefficient [1,3,4,9], we follow the approaches of Mak and
Lielmezs [10] and Romero and Lielmezs [11] and express the total F
function (eqn. (7)) in terms of three parameters: the reduced temperature
T,, the Pitzer acentric factor w, and the reduced dipole moment u, raised
to an empirical substance-dependent power x, i.e.

P 2
c( = ) =0}+20.,Q,F (7)

F=F(T,, », u) (8)
where

10°u?P,
M= Tc2 (9)
Defining

we can rewrite eqn. (7) as
Cr=Q%+ZQaQbF(Tr, w, W) (11)
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Following Romero and Lielmezs [11], the three-parameter division of the F
function (eqn. (11)) designates the following contributions: first, the contri-
bution of simple fluids, the 7, contribution; second, the correction for the
deviation of normal fluids from simple fluids, the w and 7, contributions;
and third, the behaviour of polar fluids, the 7, and u} contributions. Hence
the total F function contribution may be written as the sum of the above
three separate terms:

F(T,, w, p}) = FO(T,) + oF N(T,) + wiF(T,) (12)

It has been shown by Lielmezs and co-workers [5,6,10,11] that each of
the three F subfunctions may be expanded as follows:

1
FO(T)= Y ¢,oT¢ 7 (13a)
i=1
FO(T)= Y ey T4 (13b)
i-1
n
FO(T) = Y ¢T84 (13¢c)

i=1

As noted above, eqn. (13a) represents the F© function of simple fluids.
To determine the numerical values of the coefficients c,, and the number
of terms appearing in eqn. (12), the general criterion of minimum variance
of the curve fit was used (Fig. 1a). Once an expression for the F©
subfunction (eqn. (13a)) was obtained, the F® subfunction (coefficients c;;,
eqn. (13b)) was calculated from

F—-FO©
FO= — (14)
@

where the F function in turn is calculated from eqn. (11). To obtain the
number of terms appearing in eqns. (13), again the general criterion of
minimum variance of the curve fit was used (Fig. 1b).

The numerical values of coefficients ¢, (eqn. (13c)) were determined by
means of multiple linear regression methods, letting x = 1, i.e. setting first

_(F©® _ M

F(Z)(Trs w, ”,;:1) = - (E“xﬂ“’ze ) (15)

£

Then, using the ¢;, coefficient value computed using eqn. (15), the opti-
mum value of the exponent x (Table 1) was determined in each case for
each compound in such a way as to minimize the root-mean-square-per-
centage (RMS%) error in the calculated value of the third virial coefficient.
As a measure of x stability, the x range over which there is a 109 or less
variation (increase) in RMS% error with respect to the optimum (least) x,
is given in Table 1. The minimum number of terms appearing in eqn. (13¢)
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Fig. 1. Plots of the variance against the number of terms to determine the minimum number

of terms in the equations: (a) eqns. (13a) and (16a); (b) egns. (13b) and (16b); (c) eqns. (13c)
and (16¢).

was once again obtained from the general criterion of minimum variance of
the curve fit of the F® subfunction (Fig. 1c).

The final proposed expressions in the expanded coefficient form for the
F© (eqn. (13a)), F® (eqn. (13b)) and F® (egn. (13c)) subfunctions are

FO(T,) = —0.01175 — 0.80483 /T, + 7.29366 /T2 — 16.98304 /T
+16.86138 /T — 5.94613 /T (16a)
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FO(T.) =9.25492 — 65.50763 /T, + 162.02620 /T,? — 183.23773 / T}
+96.85253 /T — 19.08807 /T (16b)
FO(T,) = —1.30215 + 6.56985 /T, — 13.08120 /T* + 12.85166 / T?
~ 6.24687/T* + 1.20561 /T (16c)

The FOXT,) subfunction curve-fit final form (egn. (16a)) was determined
by means of linear least-squares regression methods from a set of 76
experimental data points representing argon, krypton and xenon, with a
curve-fit variance of 0.00128078 and correlation coefficient R = 0.9573.
The final expression for the coefficient of the FUXT,) subfunction (eqn.
(16b)) was obtained similarly from a set of 55 experimental data points
representing ethane, n-octane, nitrogen, benzene and sulphur hexafluoride,
with a variance of 0.035194 34 and correlation coefficient R = (.8862. The
final form of the F®(T,) subfunction (eqn. (16c)) was determined from a
set of 22 experimental data points representing trifluoromethane, methyl
chloride, methyl fluoride and acetone, with a variance of 0.00001067 and
correlation coefficient R = (0.9907. The experimental data used are listed in
Table 1.

DISCUSSION

The third virial coefficients (eqns. (3b), (6), (7), (11)) were calculated
using the proposed method (eqns. (12)-(16c)) for 18 non-polar and polar
compounds. Table 1 compares the experimental virial coefficients with the
values obtained in this work and those calculated by means of the De
Santis and Grande [3) and Orbey and Vera [4] correlations. For both, the
simple and normal fluids results indicate that the proposed method (egns.
(12), (13a), (13b), (16a), (16b), see Table 1) has a marginal edge in the
curve-fit accuracy over the De Santis and Grande (Table 1) and Orbey and
Vera (Table 1) correlations. To demonstrate this, Fig. 2 shows the reduced
third coefficient values as obtained by means of the proposed method, and
by the De Santis and Grande, and the Orbey and Vera correlations, and
the available experimental data plotted against the reduced temperature
for the normal fluids ethane, methane, sulphur hexafluoride and benzene.
As seen from Fig. 2, all the methods compare very well with the experimen-
tal data, the proposed method indicating higher accuracy in the high
temperature (above the critical point) region. It should be noted that the
correlations of De Santis and Grande [3] and Orbey and Vera [4] have been
developed to predict the third virial coefficients for non-polar gases only.
The correlation of De Santis and Grande [3] requires a knowledge of the
dipole polarizability of the molecule, Bondi’s molecular volume [49], the
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critical volume, the critical temperature and Pitzer’s acentric factor w. The
correlation of Orbey and Vera [4] uses only three characteristic parameters
for pure compounds: critical pressure, critical temperature and Pitzer’s
acentric factor ». However, the derivation of their proposed generalized
empirical correlation is intricate. The proposed method for pure normal
fluids (eqns. (12), (13a), (13b), (16a), (16b)) requires two substance-char-
acteristic parameters: critical temperature and Pitzer’s acentric factor w.
Equations (13a), (13b), (16a) and (16b) are simple linear polynomials
describing the a term (eqns. (4a) and (7)) as a function of the variable T,. It
appears, therefore, that for non-polar fluids the proposed method is
altogether simpler than the De Santis and Grande and the Orbey and Vera
correlations (Table 1, Fig. 2). For pure polar fluids, the proposed method
(egns. (12), (13c), (16c), in addition to the critical temperature and Pitzer’s
acentric factor o, requires a knowledge of the reduced dipole moment u,,
the critical pressure (eqn. (9)) and one curve-fitted substance-dependent
constant, the optimum x coefficient value (eqns. (11), (12), see Table 1).
The polar fluid contribution to the total F function (eqn. (12)) follows the
F subfunction development of normal fluids and, similarly, is represented
by a simple linear polynomial expansion in reduced temperature, T, (eqns.
(13¢) and (16¢)). Figure 3 shows the reduced third virial coefficient values
as calculated by means of the proposed method (eqns. (12), (13c), (16¢), see
Table 1) and the available experimental data plotted against the reduced
temperature 7, for the polar fluids n-propanol, trifluoromethane, propene
and benzene. The predicted values appear to be within the range of the
experimental accuracy for the third virial coefficients. Romero and Lielmezs
[11] in their work on predicting the second virial coefficient for polar fluids
have noted that the power series expansion in 7, for the given a function
(egns. (4a) and (7)) has a radius of convergence which extends from the
point of expansion to the nearest singularity in the function, so that a
power series expansion becomes useless beyond that point. Indeed, Romero
and Lielmezs in their work for predicting the second virial coefficient [11]
did set up experimentally tested curve-fitting ranges for the state parame-
ter T.. In the present work, however, owing to the uncertainties in the
experimental information available, we were not able to present with
certainty such temperature bounds. The results obtained and comparisons
made here (Table 1, Figs. 1-3), however, strongly support the proposed
method.
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